- Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix and let $M_{i j}$ denote the $(n-1) \times(n-1)$ matrix obtained from A by deleting the row and column containing $a_{i j}$. The determinant of $M_{i j}$ is called the minor of $a_{i j}$. We define the cofactor $A_{i j}$ of $a_{i j}$ by

$$
A_{i j}=(-1)^{i+j} \operatorname{det}\left(M_{i j}\right)
$$

- Subspace: If S is a nonempty subset of a vector space V, and S satisfies the conditions
(i) $\alpha \mathbf{x} \in S$ whenever $\mathbf{x} \in S$ for any scalar α
(ii) $\mathbf{x}+\mathbf{y} \in S$ whenever $\mathbf{x} \in S$ and $\mathbf{y} \in S$
then S is said to be a subspace of V.
- Let $v_{1}, v_{2}, \cdots, v_{n}$ be vectors in a vector space V. The set

$$
\left\{\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots \alpha_{n} v_{n} \mid \alpha_{1}, \cdots, \alpha_{n} \in \mathbb{R}\right\}
$$

is called the span of $v_{1}, v_{2}, \cdots, v_{n}$ and is denoted by $\operatorname{Span}\left(v_{1}, v_{2}, \cdots, v_{n}\right)$.

- The vectors $v_{1}, v_{2}, \cdots, v_{n}$ in a vector space V are said to be linearly independent if

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots c_{n} v_{n}=\mathbf{0}
$$

implies that all the scalars $c_{1}=c_{2}=\cdots=c_{n}=0$.
Theorem 0.1. Let $\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{n}$ be n vectors in \mathbb{R}^{n} and let

$$
X=\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{n}\right)
$$

The vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{n}$ will be linearly independent and span \mathbb{R}^{n} if and only if X is nonsingular.

- If vectors $v_{1}, v_{2}, \cdots, v_{n}$ are linearly independent and span V, then $v_{1}, v_{2}, \cdots, v_{n}$ form a basis for V and V has dimension n.

Theorem 0.2. If vectors $v_{1}, v_{2}, \cdots, v_{n}$ form a basis for V, then any collection of (strictly) more than n vectors in V, is linearly dependent.

- The rank of a matrix A, denoted $\operatorname{rank}(A)$, is the number of non-zero rows in the reduced echelon form of A. The dimension of the null space of a matrix is called the nullity of the matrix.

Theorem 0.3. If A is an $m \times n$ matrix, then the rank of A plus the nullity of A equals n.

- For an $n \times n$ matrix $A=\left(a_{i j}\right), p(\lambda)=\operatorname{det}(A-$ $\lambda I)$ is called the characteristic polynomial of A. $\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}$ is called the trace of A.

Theorem 0.4. If $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ are the eigenvalues of A, then

$$
\begin{align*}
& \lambda_{1} \cdot \lambda_{2} \cdots \lambda_{n}=p(0)=\operatorname{det}(A) \tag{0.1}\\
& \lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i} \tag{0.2}
\end{align*}
$$

- An $n \times n$ matrix A is said to be diagonalizable if there exists a nonsingular matrix X and a diagonal matrix D such that $X^{-1} A X=D$. We say that X diagonalizes A.

Theorem 0.5. An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

- A mapping L from a vector space V into a vector space W is said to be a linear transformation if for all $v_{1}, v_{2} \in V$ and all scalars α
(i) $L\left(v_{1}+v_{2}\right)=L\left(v_{1}\right)+L\left(v_{2}\right)$
(ii) $L\left(\alpha v_{1}\right)=\alpha L\left(v_{1}\right)$
- Let $L: V \rightarrow W$ be a linear transformation. Let $\mathbf{0}_{V}$ and $\mathbf{0}_{W}$ be the zero vectors in V and W, respectively. The kernel of L, denoted $\operatorname{ker}(L)$, is defined by

$$
\operatorname{ker}(L)=\left\{v \in V \mid L(v)=\mathbf{0}_{W}\right\}
$$

Let S be a subspace of V. The image of S, denoted $L(S)$, is defined by

$$
L(S)=\{L(v) \mid v \in S\}
$$

The image of the entire vector space, $L(V)$, is called the range of L.

- Let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. An $m \times n$ matrix A is called the (standard) matrix representation of A if

$$
L(\mathbf{x})=A \mathbf{x}, \quad \mathbf{x} \in \mathbb{R}^{n}
$$

Theorem 0.6. For any linear transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, L has an $m \times n$ matrix representation A. Moreover,

$$
A=\left(L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), \cdots, L\left(\mathbf{e}_{n}\right)\right)
$$

where $\mathbf{e}_{\mathbf{1}}, \cdots, \mathbf{e}_{\mathbf{n}}$ is the standard basis of \mathbb{R}^{n}.

- Let $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} \mathbf{y}$ be the usual inner product in \mathbb{R}^{n}. Then

1. $\langle\mathbf{x}, \mathbf{x}>\geq 0$ with equality if and only if $\mathbf{x}=\mathbf{0}$.
2. $\langle\mathbf{x}, \mathbf{y}\rangle=<\mathbf{y}, \mathbf{x}\rangle$ for all \mathbf{x}, \mathbf{y} in \mathbb{R}^{n}
3. $\langle\alpha \mathbf{x}+\beta \mathbf{y}, \mathbf{z}>=\alpha<\mathbf{x}, \mathbf{z}>+\beta<\mathbf{y}, \mathbf{z}>$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in \mathbb{R}^{n} and all scalars in α and β.

- Let $\|\mathbf{x}\|=\sqrt{<\mathbf{x}, \mathbf{x}>}$ be the usual 2-norm in \mathbb{R}^{n}. Then

1. $\|\mathbf{x}\| \geq 0$ with equality if and only if $\mathbf{x}=\mathbf{0}$.
2. $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$ for any scalar α
3. $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$ for all \mathbf{x}, \mathbf{y} in \mathbb{R}^{n}.

Theorem 0.7 (The Pythagorean Law). If \mathbf{x}, \mathbf{y} are orthogonal vectors in \mathbb{R}^{n}, then $\|\mathbf{x}+\mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}$

- If $\mathbf{y} \neq \mathbf{0}$, then the scalar projection of \mathbf{x} onto \mathbf{y} is given by

$$
\alpha=\frac{<\mathbf{x}, \mathbf{y}>}{\|\mathbf{y}\|}
$$

and the vector projection of \mathbf{x} onto \mathbf{y} is given by

$$
\mathbf{p}=\alpha\left(\frac{\mathbf{y}}{\|\mathbf{y}\|}\right)=\frac{<\mathbf{x}, \mathbf{y}>}{\|\mathbf{y}\|^{2}} \mathbf{y}
$$

Theorem 0.8. If $\mathbf{y} \neq \mathbf{0}$ and \mathbf{p} is the vector projection of \mathbf{x} onto \mathbf{y}, then $\mathbf{x}-\mathbf{p}$ and \mathbf{p} are orthogonal.

- Two subspaces X and Y of \mathbb{R}^{n} are said to be orthogonal if $<\mathbf{x}, \mathbf{y}>=0$ for every $\mathbf{x} \in X$ and every $\mathbf{y} \in Y$. If X and Y are orthogonal, we write $X \perp Y$.
Let Y a subspace of \mathbb{R}^{n}. The set of all vectors in \mathbb{R}^{n} that are orthogonal to every vector in Y will be denoted Y^{\perp}. Thus,

$$
Y^{\perp}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid<\mathbf{x}, \mathbf{y}>=0, \text { for every } \mathbf{y} \in Y\right\}
$$

The set Y^{\perp} is called the orthogonal complement of Y.
Theorem 0.9. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{m}$ be m vectors in \mathbb{R}^{n}. Let $A=\left(\begin{array}{c}\mathbf{v}_{1}^{T} \\ \vdots \\ \mathbf{v}_{m}^{T}\end{array}\right)$ be an $m \times n$ matrix. If $V=\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{m}\right)$, then $V^{\perp}=N(A)$.

Theorem 0.10. If A is an $m \times n$ matrix of rank n, the equations

$$
A^{T} A \mathbf{x}=A^{T} \mathbf{b}
$$

have a unique solution

$$
\widehat{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}
$$

and $\widehat{\mathbf{x}}$ is the unique least squares solution of the system $A \mathbf{x}=$ b.

- Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$ be non-zero vectors in \mathbb{R}^{m}. If $<\mathbf{v}_{i}, \mathbf{v}_{j}>=0$ whenever $i \neq j$, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}$ is said to be an orthogonal set in \mathbb{R}^{m}. An orthonormal set of vectors is an orthogonal set of unit vectors.

Theorem 0.11. If $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{n}$ is an orthonormal set in \mathbb{R}^{n}, then $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{n}$ is an orthonormal basis for \mathbb{R}^{n}. And if $\mathbf{v}=\sum_{i=1}^{n} c_{i} u_{i}$, then $c_{i}=<\mathbf{v}, \mathbf{u}_{i}>$. Moreover,

$$
\|\mathbf{v}\|^{2}=\sum_{i=1}^{n} c_{i}^{2} . \quad \text { (Parseval's Formula) }
$$

- An $n \times n$ matrix Q is said to be orthogonal matrix if the column vectors of Q form an orthonormal set in \mathbb{R}^{n}.

Theorem 0.12. Q is an orthogonal matrix if and only if $Q^{T} Q=I$. If Q is an orthogonal matrix, then

1. $Q^{T}=Q^{-1}$
2. $\langle Q \mathbf{x}, Q \mathbf{y}\rangle=\langle\mathbf{x}, \mathbf{y}\rangle$
3. $\|Q \mathbf{x}\|=\|\mathbf{x}\|$

Theorem 0.13. If $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{k}$ is an orthonormal set in \mathbb{R}^{n}, then the orthogonal (vector) projection of a vector $\mathbf{x} \in \mathbb{R}^{n}$ onto $\operatorname{Span}\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{k}\right)$ is given by

$$
\mathbf{p}=\sum_{i=1}^{k}<\mathbf{x}, \mathbf{u}_{i}>\mathbf{u}_{i}
$$

Theorem 0.14 (The Gram-Schmidt Process). Let $\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{n}$ be a basis for \mathbb{R}^{n}. In Step 1 , let

$$
\mathbf{u}_{1}=\frac{1}{\left\|\mathbf{x}_{1}\right\|} \mathbf{x}_{1}
$$

and define $\mathbf{u}_{2}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{n}$ recursively by:
in Step $k+1$, let

$$
\begin{gathered}
\mathbf{p}_{k}=\sum_{i=1}^{k}<\mathbf{x}_{k+1}, \mathbf{u}_{i}>\mathbf{u}_{i} \\
\mathbf{v}_{k+1}=\mathbf{x}_{k+1}-\mathbf{p}_{k}, \quad \text { and } \quad \mathbf{u}_{k+1}=\frac{1}{\left\|\mathbf{v}_{k+1}\right\|} \mathbf{v}_{k+1}
\end{gathered}
$$

Then $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{n}$ is an orthonormal basis for \mathbb{R}^{n}.

