• Let $A = (a_{ij})$ be an $n \times n$ matrix and let M_{ij} denote the $(n-1) \times (n-1)$ matrix obtained from A by deleting the row and column containing a_{ij} . The determinant of M_{ij} is called the minor of a_{ij} . We define the cofactor A_{ij} of a_{ij} by

$$A_{ij} = (-1)^{i+j} \det(M_{ij})$$

- Subspace: If S is a nonempty subset of a vector space V, and S satisfies the conditions
 - (i) $\alpha \mathbf{x} \in S$ whenever $\mathbf{x} \in S$ for any scalar α
 - (ii) $\mathbf{x} + \mathbf{y} \in S$ whenever $\mathbf{x} \in S$ and $\mathbf{y} \in S$

then S is said to be a subspace of V.

• Let v_1, v_2, \dots, v_n be vectors in a vector space V. The set

$$\{\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n \, | \, \alpha_1, \cdots, \alpha_n \in \mathbb{R}\}$$

is called the span of v_1, v_2, \dots, v_n and is denoted by $\operatorname{Span}(v_1, v_2, \dots, v_n)$.

• The vectors v_1, v_2, \cdots, v_n in a vector space V are said to be linearly independent if

 $c_1v_1 + c_2v_2 + \cdots + c_nv_n = \mathbf{0}$

implies that all the scalars $c_1 = c_2 = \cdots = c_n = 0$.

Theorem 0.1. Let $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n$ be *n* vectors in \mathbb{R}^n and let

 $X = (\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n)$

The vectors $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n$ will be linearly independent and span \mathbb{R}^n if and only if X is nonsingular.

• If vectors v_1, v_2, \dots, v_n are linearly independent and span V, then v_1, v_2, \dots, v_n form a basis for V and V has dimension n.

Theorem 0.2. If vectors v_1, v_2, \dots, v_n form a basis for V, then any collection of (strictly) more than n vectors in V, is linearly dependent.

• The rank of a matrix A, denoted rank(A), is the number of non-zero rows in the reduced echelon form of A. The dimension of the null space of a matrix is called the nullity of the matrix.

Theorem 0.3. If A is an $m \times n$ matrix, then the rank of A plus the nullity of A equals n.

• For an $n \times n$ matrix $A = (a_{ij}), p(\lambda) = \det(A - \lambda I)$ is called the characteristic polynomial of A. $\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$ is called the trace of A.

Theorem 0.4. If $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigenvalues of A, then

$$\lambda_1 \cdot \lambda_2 \cdots \lambda_n = p(0) = \det(A) \qquad (0.1)$$

$$\lambda_1 + \lambda_2 + \dots + \lambda_n = \operatorname{tr}(A) = \sum_{i=1}^n a_{ii} \qquad (0.2)$$

• An $n \times n$ matrix A is said to be diagonalizable if there exists a nonsingular matrix X and a diagonal matrix D such that $X^{-1}AX = D$. We say that X diagonalizes A.

Theorem 0.5. An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

 A mapping L from a vector space V into a vector space W is said to be a linear transformation if for all v₁, v₂ ∈ V and all scalars α

(i)
$$L(v_1 + v_2) = L(v_1) + L(v_2)$$

(ii) $L(\alpha v_1) = \alpha L(v_1)$

• Let $L: V \to W$ be a linear transformation. Let $\mathbf{0}_V$ and $\mathbf{0}_W$ be the zero vectors in V and W, respectively. The kernel of L, denoted ker(L), is defined by

$$ker(L) = \{ v \in V | L(v) = \mathbf{0}_W \}$$

Let S be a subspace of V. The image of S, denoted L(S), is defined by

$$L(S)=\{L(v)|v\in S\}$$

The image of the entire vector space, L(V), is called the range of L.

• Let $L : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. An $m \times n$ matrix A is called the (standard) matrix representation of A if

$$L(\mathbf{x}) = A\mathbf{x}, \ \mathbf{x} \in \mathbb{R}^n$$

Theorem 0.6. For any linear transformation $L : \mathbb{R}^n \to \mathbb{R}^m$, L has an $m \times n$ matrix representation A. Moreover,

$$A = (L(\mathbf{e}_1), L(\mathbf{e}_2), \cdots, L(\mathbf{e}_n))$$

where $\mathbf{e_1}, \cdots, \mathbf{e_n}$ is the standard basis of \mathbb{R}^n .

- Let $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y}$ be the usual inner product in \mathbb{R}^n . Then
 - 1. $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$ with equality if and only if $\mathbf{x} = \mathbf{0}$.
 - 2. $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ for all \mathbf{x}, \mathbf{y} in \mathbb{R}^n
 - 3. $< \alpha \mathbf{x} + \beta \mathbf{y}, \mathbf{z} >= \alpha < \mathbf{x}, \mathbf{z} > +\beta < \mathbf{y}, \mathbf{z} >$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in \mathbb{R}^n and all scalars in α and β .
- Let $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ be the usual 2-norm in \mathbb{R}^n . Then
 - 1. $\|\mathbf{x}\| \ge 0$ with equality if and only if $\mathbf{x} = \mathbf{0}$.
 - 2. $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ for any scalar α
 - 3. $\|\mathbf{x} + \mathbf{y}\| \leq \|\mathbf{x}\| + \|\mathbf{y}\|$ for all \mathbf{x}, \mathbf{y} in \mathbb{R}^n .

Theorem 0.7 (The Pythagorean Law). If \mathbf{x}, \mathbf{y} are orthogonal vectors in \mathbb{R}^n , then $\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$

• If $\mathbf{y} \neq \mathbf{0}$, then the scalar projection of \mathbf{x} onto \mathbf{y} is given by

$$\alpha = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{y}\|}$$

and the vector projection of \mathbf{x} onto \mathbf{y} is given by

$$\mathbf{p} = \alpha \left(\frac{\mathbf{y}}{\|\mathbf{y}\|} \right) = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{y}\|^2} \mathbf{y}$$

Theorem 0.8. If $\mathbf{y} \neq \mathbf{0}$ and \mathbf{p} is the vector projection of \mathbf{x} onto \mathbf{y} , then $\mathbf{x} - \mathbf{p}$ and \mathbf{p} are orthogonal.

• Two subspaces X and Y of \mathbb{R}^n are said to be orthogonal if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$ for every $\mathbf{x} \in X$ and every $\mathbf{y} \in Y$. If X and Y are orthogonal, we write $X \perp Y$.

Let Y a subspace of \mathbb{R}^n . The set of all vectors in \mathbb{R}^n that are orthogonal to every vector in Y will be denoted Y^{\perp} . Thus,

$$Y^{\perp} = \{ \mathbf{x} \in \mathbb{R}^n \mid \langle \mathbf{x}, \mathbf{y} \rangle = 0 , \text{ for every } \mathbf{y} \in Y \}$$

The set Y^{\perp} is called the orthogonal complement of Y.

Theorem 0.9. Let
$$\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_m$$
 be m vectors in \mathbb{R}^n . Let $A = \begin{pmatrix} \mathbf{v}_1^T \\ \vdots \\ \mathbf{v}_m^T \end{pmatrix}$ be an $m \times n$ matrix. If $V = \operatorname{span}(\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_m)$, then $V^{\perp} = N(A)$.

Theorem 0.10. If A is an $m \times n$ matrix of rank n, the equations

$$A^T A \mathbf{x} = A^T \mathbf{b}$$

have a unique solution

$$\widehat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$$

and $\hat{\mathbf{x}}$ is the unique least squares solution of the system $A\mathbf{x} = \mathbf{b}$.

• Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be non-zero vectors in \mathbb{R}^m . If $\langle \mathbf{v}_i, \mathbf{v}_j \rangle \geq 0$ whenever $i \neq j$, then $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is said to be an orthogonal set in \mathbb{R}^m . An orthonormal set of vectors is an orthogonal set of unit vectors.

Theorem 0.11. If $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ is an orthonormal set in \mathbb{R}^n , then $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ is an orthonormal basis for \mathbb{R}^n . And if $\mathbf{v} = \sum_{i=1}^n c_i u_i$, then $c_i = \langle \mathbf{v}, \mathbf{u}_i \rangle$. Moreover,

$$\|\mathbf{v}\|^2 = \sum_{i=1}^n c_i^2$$
. (Parseval's Formula)

• An $n \times n$ matrix Q is said to be orthogonal matrix if the column vectors of Q form an orthonormal set in \mathbb{R}^n .

Theorem 0.12. Q is an orthogonal matrix if and only if $Q^TQ = I$. If Q is an orthogonal matrix, then

1. $Q^T = Q^{-1}$ 2. $\langle Q\mathbf{x}, Q\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle$ 3. $||Q\mathbf{x}|| = ||\mathbf{x}||$

•

Theorem 0.13. If $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ is an orthonormal set in \mathbb{R}^n , then the orthogonal (vector) projection of a vector $\mathbf{x} \in \mathbb{R}^n$ onto $\operatorname{Span}(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k)$ is given by

$$\mathbf{p} = \sum_{i=1}^k < \mathbf{x}, \mathbf{u}_i > \mathbf{u}_i$$

•

Theorem 0.14 (The Gram–Schmidt Process). Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ be a basis for \mathbb{R}^n . In Step 1, let

$$\mathbf{u}_1 = \frac{1}{\|\mathbf{x}_1\|} \mathbf{x}_1$$

and define $\mathbf{u}_2, \mathbf{u}_2, \cdots, \mathbf{u}_n$ recursively by: in Step k + 1, let

$$\mathbf{p}_k = \sum_{i=1}^k < \mathbf{x}_{k+1}, \mathbf{u}_i > \mathbf{u}_i$$
$$\mathbf{v}_{k+1} = \mathbf{x}_{k+1} - \mathbf{p}_k, \text{ and } \mathbf{u}_{k+1} = \frac{1}{\|\mathbf{v}_{k+1}\|} \mathbf{v}_k.$$

Then $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ is an orthonormal basis for \mathbb{R}^n .