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• Let A = (aij) be an n × n matrix and let Mij denote
the (n−1)×(n−1) matrix obtained from A by deleting
the row and column containing aij . The determinant
of Mij is called the minor of aij . We define the cofactor
Aij of aij by

Aij = (−1)i+jdet(Mij)

• Subspace: If S is a nonempty subset of a vector space
V , and S satisfies the conditions

(i) αx ∈ S whenever x ∈ S for any scalar α

(ii) x + y ∈ S whenever x ∈ S and y ∈ S

then S is said to be a subspace of V .

• Let v1, v2, · · · , vn be vectors in a vector space V . The
set

{α1v1 + α2v2 + · · ·αnvn |α1, · · · , αn ∈ R}

is called the span of v1, v2, · · · , vn and is denoted by
Span(v1, v2, · · · , vn).

• The vectors v1, v2, · · · , vn in a vector space V are said
to be linearly independent if

c1v1 + c2v2 + · · · cnvn = 0

implies that all the scalars c1 = c2 = · · · = cn = 0.

Theorem 0.1. Let x1,x2, · · · ,xn be n vectors in Rn

and let
X = (x1,x2, · · · ,xn)

The vectors x1,x2, · · · ,xn will be linearly independent
and span Rn if and only if X is nonsingular.

• If vectors v1, v2, · · · , vn are linearly independent and
span V , then v1, v2, · · · , vn form a basis for V and V
has dimension n.

Theorem 0.2. If vectors v1, v2, · · · , vn form a basis for
V , then any collection of (strictly) more than n vectors
in V , is linearly dependent.

• The rank of a matrix A, denoted rank(A), is the number
of non-zero rows in the reduced echelon form of A. The
dimension of the null space of a matrix is called the
nullity of the matrix.

Theorem 0.3. If A is an m×n matrix, then the rank
of A plus the nullity of A equals n.

• For an n × n matrix A = (aij), p(λ) = det(A −
λ I) is called the characteristic polynomial of A.
tr(A) =

∑n
i=1 aii is called the trace of A.

Theorem 0.4. If λ1, λ2, · · · , λn are the eigen-
values of A, then

λ1 · λ2 · · ·λn = p(0) = det(A) (0.1)

λ1 + λ2 + · · ·+ λn = tr(A) =

n∑
i=1

aii (0.2)

• An n×n matrix A is said to be diagonalizable if
there exists a nonsingular matrix X and a diag-
onal matrix D such that X−1AX = D. We say
that X diagonalizes A.

Theorem 0.5. An n× n matrix A is diagonal-
izable if and only if A has n linearly independent
eigenvectors.

• A mapping L from a vector space V into a vector
space W is said to be a linear transformation if
for all v1, v2 ∈ V and all scalars α

(i) L(v1 + v2) = L(v1) + L(v2)

(ii) L(αv1) = αL(v1)

• Let L : V → W be a linear transformation. Let
0V and 0W be the zero vectors in V and W ,
respectively. The kernel of L, denoted ker(L), is
defined by

ker(L) = {v ∈ V |L(v) = 0W }

Let S be a subspace of V . The image of S, de-
noted L(S), is defined by

L(S) = {L(v)|v ∈ S}

The image of the entire vector space, L(V ), is
called the range of L.

• Let L : Rn → Rm be a linear transformation. An
m× n matrix A is called the (standard) matrix
representation of A if

L(x) = Ax, x ∈ Rn

Theorem 0.6. For any linear transformation
L : Rn → Rm, L has an m× n matrix represen-
tation A. Moreover,

A = (L(e1), L(e2), · · · , L(en))

where e1, · · · , en is the standard basis of Rn.
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• Let < x,y >= xTy be the usual inner product in Rn. Then

1. < x,x >≥ 0 with equality if and only if x = 0.

2. < x,y >=< y,x > for all x,y in Rn

3. < αx + βy, z >= α < x, z > +β < y, z > for all x,y, z
in Rn and all scalars in α and β.

• Let ‖x‖ =
√
< x,x > be the usual 2-norm in Rn. Then

1. ‖x‖ ≥ 0 with equality if and only if x = 0.

2. ‖αx‖ = |α| ‖x‖ for any scalar α

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x,y in Rn.

Theorem 0.7 (The Pythagorean Law). If x,y are orthogonal
vectors in Rn, then ‖x + y‖2 = ‖x‖2 + ‖y‖2

• If y 6= 0, then the scalar projection of x onto y is given by

α =
< x,y >

‖y‖

and the vector projection of x onto y is given by

p = α

(
y

‖y‖

)
=
< x,y >

‖y‖2
y

Theorem 0.8. If y 6= 0 and p is the vector projection of x
onto y, then x− p and p are orthogonal.

• Two subspaces X and Y of Rn are said to be orthogonal if
< x,y >= 0 for every x ∈ X and every y ∈ Y . If X and Y
are orthogonal, we write X ⊥ Y .

Let Y a subspace of Rn. The set of all vectors in Rn that are
orthogonal to every vector in Y will be denoted Y ⊥. Thus,

Y ⊥ = {x ∈ Rn | < x,y >= 0 , for every y ∈ Y }

The set Y ⊥ is called the orthogonal complement of Y .

Theorem 0.9. Let v1,v2, · · · ,vm be m vectors in Rn. Let

A =

vT
1
...

vT
m

 be an m×n matrix. If V = span(v1,v2, · · · ,vm),

then V ⊥ = N(A).

•

Theorem 0.10. If A is an m×n matrix of rank n, the equa-
tions

ATAx = ATb

have a unique solution

x̂ = (ATA)−1ATb

and x̂ is the unique least squares solution of the system Ax =
b.

• Let v1,v2, · · · ,vn be non-zero vectors in Rm.
If < vi,vj >= 0 whenever i 6= j, then
{v1,v2, · · · ,vn} is said to be an orthogonal set
in Rm. An orthonormal set of vectors is an or-
thogonal set of unit vectors.

Theorem 0.11. If u1,u2, · · · ,un is an or-
thonormal set in Rn, then u1,u2, · · · ,un is an
orthonormal basis for Rn. And if v =

∑n
i=1 ciui,

then ci =< v,ui >. Moreover,

‖v‖2 =

n∑
i=1

c2i . (Parseval’s Formula)

• An n×nmatrixQ is said to be orthogonal matrix
if the column vectors of Q form an orthonormal
set in Rn.

Theorem 0.12. Q is an orthogonal matrix if
and only if QTQ = I. If Q is an orthogonal
matrix, then

1. QT = Q−1

2. < Qx, Qy >=< x,y >

3. ‖Qx‖ = ‖x‖

•

Theorem 0.13. If u1,u2, · · · ,uk is an or-
thonormal set in Rn, then the orthogonal (vec-
tor) projection of a vector x ∈ Rn onto
Span(u1,u2, · · · ,uk) is given by

p =

k∑
i=1

< x,ui > ui

•

Theorem 0.14 (The Gram–Schmidt Process).
Let x1,x2, · · · ,xn be a basis for Rn. In Step 1,
let

u1 =
1

‖x1‖
x1

and define u2,u2, · · · ,un recursively by:

in Step k + 1, let

pk =

k∑
i=1

< xk+1,ui > ui

vk+1 = xk+1 − pk, and uk+1 =
1

‖vk+1‖
vk+1

Then u1,u2, · · · ,un is an orthonormal basis for
Rn.
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