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Let A = (a;;) be an n x n matrix and let M;; denote
the (n—1) x (n—1) matrix obtained from A by deleting
the row and column containing a;;. The determinant
of M;; is called the minor of a;;. We define the cofactor
Aij of Qi by

Aij = (=1 det(My)
Subspace: If S is a nonempty subset of a vector space
V', and S satisfies the conditions

(i) ax € S whenever x € S for any scalar o

(ii) x+y € S whenever x € Sand y € S
then S is said to be a subspace of V.

Let v1,v9,--- ,v, be vectors in a vector space V. The
set

{Oélvl+a2U2+"'anvn‘a17"' ,OénER}

is called the span of v1,vs,---,v, and is denoted by
Span(vy, va, -+ ,Uy).

The vectors vy, va, -+, v, in a vector space V are said
to be linearly independent if

c1v1 + covg + - vy =0

implies that all the scalars ¢y = co =--- =¢, = 0.
Theorem 0.1. Let x1,Xs, -+ ,X, be n vectors in R
and let

X = (X17X27' o 7Xn)
The vectors x1,Xa, -+ , X, will be linearly independent

and span R™ if and only if X is nonsingular.

If vectors wy,vs,--- ,v, are linearly independent and
span V', then vi,vg, - ,v, form a basis for V and V
has dimension n.

Theorem 0.2. If vectors vi,ve, -+ ,v, form a basis for
V, then any collection of (strictly) more than n vectors
in'V, is linearly dependent.

The rank of a matrix A, denoted rank(A), is the number
of non-zero rows in the reduced echelon form of A. The
dimension of the null space of a matrix is called the
nullity of the matrix.

Theorem 0.3. If A is an m X n matriz, then the rank
of A plus the nullity of A equals n.

e For an n x n matrix A = (a;;), p(A) = det(A4 —

AI) is called the characteristic polynomial of A.
tr(A) = Y7 a;; is called the trace of A.

Theorem 0.4. If A\, Ao, , A\, are the eigen-
values of A, then

AL Az A = p(0) = det(4)  (0.1)

M A+ A, =tr(4) = Zan‘ (0.2)
=1

An n xn matrix A is said to be diagonalizable if
there exists a nonsingular matrix X and a diag-
onal matrix D such that X 'AX = D. We say
that X diagonalizes A.

Theorem 0.5. An n X n matriz A is diagonal-
izable if and only if A has n linearly independent
etgenvectors.

A mapping L from a vector space V' into a vector
space W is said to be a linear transformation if
for all v1,v2 € V and all scalars «

(1) L(U1 + ’02) = L(’U1> + L(’U2>
(i) L(awv1) = aL(v;)

Let L : V — W be a linear transformation. Let
0y and Oy be the zero vectors in V and W,
respectively. The kernel of L, denoted ker(L), is
defined by

ker(L) ={v € V|L(v) = 0w}

Let S be a subspace of V. The image of S, de-
noted L(S), is defined by

L(S) = {L(v)[v € 5}

The image of the entire vector space, L(V), is
called the range of L.

Let L : R™ — R™ be a linear transformation. An
m x n matrix A is called the (standard) matrix
representation of A if

L(x) = Ax, xe€R"

Theorem 0.6. For any linear transformation
L:R™ - R™, L has an m X n matrix represen-
tation A. Moreover,

A= (L(e1),L(es), - ,L(ey,))

where €1, ,en 18 the standard basis of R™.



Let < x,y >= xTy be the usual inner product in R”. Then

1. < x,x >> 0 with equality if and only if x = 0.

2. <x,y >=<y,x > for all x,y in R”

3. <ax+fBy,z>=a<x,z>+8<y,z>foral x,y,z
in R™ and all scalars in a and S.

Let ||x]] = /< X,x > be the usual 2-norm in R™. Then
1. ||x|| > 0 with equality if and only if x = 0.
2. |lax|| = |o ||x]|| for any scalar «
3. Ix+yll <|x[ + |ly] for all x,y in R™.

Theorem 0.7 (The Pythagorean Law). Ifx,y are orthogonal
vectors in R™, then ||x +y||* = [|x[|* + ||y]|?

If y # 0, then the scalar projection of x onto y is given by
<x,y>

o =
Iyl

and the vector projection of x onto y is given by

pa<y> :7<X7y>y
Iy Iyl

Theorem 0.8. Ify # 0 and p is the vector projection of x
onto 'y, then x — p and p are orthogonal.

Two subspaces X and Y of R™ are said to be orthogonal if
<x,y >>=0forevery x € X and everyy € Y. If X and Y
are orthogonal, we write X L Y.

Let Y a subspace of R™. The set of all vectors in R™ that are
orthogonal to every vector in Y will be denoted Y*. Thus,

Yi={xeR"| <x,y>=0, forevery y €Y}
The set Y is called the orthogonal complement of Y.

Theorem 0.9. Let vi,va, -

T
Vi

,Vin be m wvectors in R™. Let

A= | beanmxn matriz. If V =span(vy,va, - ,Vy),
vT

then V+ = N(A).

Theorem 0.10. If A is an m x n matriz of rank n, the equa-
tions

ATAx = ATb
have a unique solution
X=(ATA) 1 ATp

and X is the unique least squares solution of the system Ax =
b.

e Let vi,vg,---

,V,, be non-zero vectors in R™.
If < vi,v; >= 0 whenever i # 7, then
{v1,va, -+ ,v,} is said to be an orthogonal set
in R™. An orthonormal set of vectors is an or-
thogonal set of unit vectors.

Theorem 0.11. If uj,us, - ,u, is an or-
thonormal set in R™, then ui,us,--- ,u, is an
orthonormal basis for R™. And if v =>""_, cju;,
then ¢; =< v,u; >. Moreover,

n
Iv][* = Zcf (Parseval’s Formula)
i=1

An nxn matrix @ is said to be orthogonal matrix
if the column vectors of ) form an orthonormal
set in R™.

Theorem 0.12. Q is an orthogonal matrixz if
and only if QTQ = I. If Q is an orthogonal
matriz, then

1. QT =Q7 !
2. <Qx,Qy >=<x,y >
3. Qx| = |||

Theorem 0.13. If uj,us, -+ ,u; is an or-
thonormal set in R™, then the orthogonal (vec-
tor) projection of a wector x € R™ onto
Span(uy,ug, -+ ,ug) is given by

k
p=Z<x,ui>ui

i=1

Theorem 0.14 (The Gram-Schmidt Process).

Let x1,%2, -+ ,X, be a basis for R™. In Step 1,
let
1
u; = —X1
%1l

and define us, ug, - - -

in Step k+ 1, let

, U, recursively by:

k

Pr = Z < Xg+1, U5 > Wy
i=1

Vil = Xp41 — Pk,  and ugy = Vel

Vit
Vil T

Then u,ug, - - -
R’n

, Uy, is an orthonormal basis for



